Online Multi-target Tracking by Large Margin Structured Learning
نویسندگان
چکیده
We present an online data association algorithm for multiobject tracking using structured prediction. This problem is formulated as a bipartite matching and solved by a generalized classification, specifically, Structural Support Vector Machines (S-SVM). Our structural classifier is trained based on matching results given the similarities between all pairs of objects identified in two consecutive frames, where the similarity can be defined by various features such as appearance, location, motion, etc. With an appropriate joint feature map and loss function in the S-SVM, finding the most violated constraint in training and predicting structured labels in testing are modeled by the simple and efficient Kuhn-Munkres (Hungarian) algorithm in a bipartite graph. The proposed structural classifier can be generalized effectively for many sequences without re-training. Our algorithm also provides a method to handle entering/leaving objects, short-term occlusions, and misdetections by introducing virtual agents—additional nodes in a bipartite graph. We tested our algorithm on multiple datasets and obtained comparable results to the state-of-the-art methods with great efficiency and simplicity.
منابع مشابه
Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملScalable Large-Margin Online Learning for Structured Classification
We investigate large-margin online learning algorithms for large-scale structured classification tasks, focusing on a structured-output extension of MIRA, the multi-class classification algorithm of Crammer and Singer [5]. The extension approximates the parameter updates in MIRA using k-best structural decoding. We evaluate the algorithm on several sequential classification tasks, showing that ...
متن کاملLearning Optimal Parameters For Multi-target Tracking
Multi-target tracking problems are traditionally tackled in two different ways. One way is to first group detections into candidate tracklets and then perform scoring and association of these tracklets [5, 6], this can be done in either an online/streaming fashion or an offline/batch fashion and it allows tracklets to be scored with richer trajectory and appearance models. Another approach is t...
متن کاملA large margin framework for single camera offline tracking with hybrid cues
We introduce MMTrack (max-margin tracker), a single-target tracker that linearly combines constant and adaptive appearance features. We frame offline single-camera tracking as a structured output prediction task where the goal is to find a sequence of locations of the target given a video. Following recent advances in machine learning, we discriminatively learn tracker parameters by first gener...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012